Expression pattern of uricase II gene during root nodule development in *Phaseolus vulgaris*

K. Papadopoulou, A. Roussis, H. Kuina and P. Katinakis*

Agricultural University of Athens, Department of Agricultural Biology and Biotechnology, Iera Odos 75, GR-118 55 Athens (Greece) and ^aAgricultural University of Wageningen, Department of Molecular Biology, Dreijenlaan 3, NL-6703 HA, Wageningen (The Netherlands)

Received 15 June 1994; accepted 15 August 1994

Abstract. A *Phaseolus vulgaris* uricase II cDNA clone has been isolated and sequenced. Comparison on the nucleotide level between this clone and the soybean uricase II clone revealed 88.8% identity. The in situ hybridization technique was used to follow the expression pattern in developing root nodules of *Phaseolus vulgaris*. The uricase II transcripts were localized only in the uninfected cells of the central tissue and mainly in the periphery of the cell. Uricase II mRNA is first detected in nodules 12 days after infection. A maximum level of transcripts is reached in 21-day-old nodules, followed by a considerable reduction in 28-day-old nodules.

Key words. Uricase II; Phaseolus; nodulin, nitrogen fixation.

In many legumes in which nitrogen transport from the roots is normally via amides, glutamine and asparagine, there is a switch to ureide sythesis when root nodules develop¹⁻³. These plants are referred to as the 'tropical' legumes and belong mainly to the two tribes Phaseoleae and Glycineae. This switch from amide to ureide synthesis results in economies in carbon use: ureides use less organic carbon to transport the same amount of nitrogen than amides do4. The metabolic conversions required for the synthesis of ureides involve de novo purine biosynthesis and subsequent oxidative degradation of these purines⁵⁻⁸. In short, in active nodules of legumes, atmospheric N₂ is reduced by the bacteroids and the resulting ammonia9 is assimilated into glutamine^{10, 11} in the cytosol of the infected cells^{12–14}. This glutamine is then channelled via serine/glycine and aspartate into purine biosynthesis which takes place in the plastids of the host cell¹⁵. The purine xanthine is exported to the cytosol where it is oxidized to uric acid, which is transferred to the peroxisomes of the adjacent uninfected cells16, 17, and is converted to allantoin and other ureides before exported via the xylem. The conversion of uric acid to allantoin is carried out in the nodules of tropical legumes by a nodule-specific enzyme, namely uricase II18, 19.

Uricase II is a tetrameric enzyme that is produced exclusively in the root nodules of legumes²⁰. Uricase II constitutes approximately 2% of the soluble protein extracted from mature nodules of soybean and *Phaseolus*^{21, 22}. In soybean, the uricase II gene has been isolated, and its product localized within the peroxisomes of unifected cells by immunogold-labelling analysis²³. In the root nodules of *Phaseolus*, the purification of uricase II as well as the isolation of a cDNA clone cross-hy-

In this report we describe the isolation and nucleotide sequence of a *Phaseolus* uricase II cDNA clone, and in situ hybridization experiments designed to follow the expression of the uricase II gene in *Phaseolus* nodules at different development stages.

Materials and methods

Plant material. Growth conditions of bean plants (*Phaseolus vulgaris* cv. Tendergreen) and inoculation with *R. leguminosarum* biovar *phaseolii* were as described by Bisseling et al²⁶.

Isolation and sequence analysis of Phaseolus uricase II cDNA clone. The Phaseolus vulgaris cv. Tendergeen λgt11 cDNA library, made from polyA+ RNA isolated from 21-day-old nodules, was generously provided by Dr. B. G. Forde (Rothamsted Experimental Station, UK). The screening of the library with a ³²P-labelled uricase II cDNA clone from soybean, phage purification, and subcloning of the positive clones into the pBluescript KS+ vector (Stratagene Inc., USA) were done according to standard methods²⁷. The sizes of the inserts of positive recombinant phages were determined by PCR using the forward and reverse \(\lambda gt11 \) primers (Promega, USA). The nucleotide sequence of pPv-35.1 clone was determined using the dideoxy chain termination method²⁸. Data were stored and analyzed by programs written by Staden²⁹ on a micro VAX/VMS computer.

In situ hybridization. Nodules harvested at different time intervals after inoculation with *Rhizobium* were

bridizing with the soybean gene has been reported²⁴. The accumulation of the protein starts 11 days after infection, which shows that *Phaseolus* uricase II is also a true nodulin, expressed just before the onset of nitrogen fixation^{22, 25}.

^{*} Corresponding author.

Figure 1A.

gure	t IA.	
_	R D D N S D I V A T D T M K N	4.5
P	CCGCGATGATAACTCTGACATCGTTGCCACTGACACCATGAAAAA	45
s	TT	259
_	T V Y A K A K E C S D I S V	0.7
P	CACGGTGTATGCAAAAGCAAAGGAATGCTCGGATATCT-CTGT	87
s	T.ACCTTTC	304
	EDFAILLAKHFVSFY	
P	CGAGGACTTTGCTATTCTACTTGCCAAGCACTTTGTATCATTTTA	132
		364
S	G	364
	K K V T G A I V N I V E K P W	
_		127
P	CAAGAAGGTCACTGGTGCTATTGTGAATATCGTGGAAAAACCATG	177
s	.CT	414
	ERVIVDGQPHQHGFT	
Þ	GGAGCGTGTCATTGTGGATGGTCAACCTCATCAACATGGTTTCAC	222
S		464
	LGSEKHTTEAILQKS	
₽	ACTTGGGTCTGAGAAGCATACCACAGAGGCAATACTACAGAAGTC	267
S		514
	G S L Q L T S G I E G L S V L	
P	TTGTTCACTACAATTGACTTCTGGTATTGAAGGATTGTCAGTGTT	312
s	TG	564
	KTTOSVFENFIRDKY	
P	GAAGACAACCCAGTCTGGTTTTGAGAATTTCATTAGAGACAAGTA	357
S	TA	614
3		014
	TALPDTRERILATEV	
-	CACAGCACTTCCAGATACCCGCGAAAGGATTTTGGCAACAGAAGT	402
P		
s		664
	TALWRYSYESLYNLP	
P	AACTGCTCTGTGGAGGTATTCGTACGAATCGCTATACAACCTCCC	447
S	A	714
	QKPLYFTDKYLEVKK	
P	TCAGAAGCCACTATACTTCACAGACAAGTATCTGGAAGTGAAAAA	492
S		764
	V L A D T F F G P T K Q G V Y	
P	AGTTCTGGCTGACACATTTTTTGGGCCAACCAAACAGGGGGTCTA	537
s		814
	SPSVQNTLYLMAKAT	
P	TAGCCCATCTGTTCAAAACACACTCTACCTTATGGCAAAGGCCAC	582
s		864
۵		004
	LNRFPDIAYCHLKMP	
P	ACTGAACAGATTCCTGACATTGCTTATTGCCATCTAAAGATGCC	627
S		914
۵	AGAG	J 1 Mg
	N L H F L P V N I S S K D G P	
P		672
	AAATCTTCATTTCTTACCAGTCAACATCTCAAGCAAGGATGGTCC	
\$	A.CC	964
	* # # # # B B B B B W W * B B B B B B	
-	I V K F E D D V Y L P T D E P	7
P	AATTGTGAAGTTTGAGGATGATGTTTATTTACCAACGGACGAGCC	717
s	TT	1014
	H G S I E A S L L Q L F Y I L	_
P	TCATGGCTCAATTGAAGCAAGCTTATTACAACTTTTTTACATTTT	762
S	AGCTTGAGC.GC	1054
	L *	
P	ATTGTGAAATTGGGTCGCGTTTCATACGATTCGGTTATGCCATAG	807
P	ACGCGTAAAGGTTTTTAATGGTTTCCCGTAACCAGACGATCTTCG	852
P	GATTATGGCTGTTCCGTTTATGCCACAGCAGGGTAAAAGGAACTT	897
P	CCAGCTTTTTTTGCCTGGCTTTCGTCAAACGGGAGAGGAAGAAGC	942
Þ	AACCAACGGCAGTTGATGGAGTTATTGTAGTACTGACAGTAGCGC	987
P	GGCCGGTCGGCCAGTAGCAGATTGTCGGGTTGCGCTGCCATAAAC	1032
P	AGTGACTGGCTCGAATTC	1050
-		

fixed in 4% paraformaldehyde supplemented with 0.25% glutaraldehyde in 10 mM sodium phosphate buffer for 4 h³⁹. Fixed nodules were dehydrated and embedded in paraffin and sections 7–10 μm thick were cut as described by Yang et al.³⁰. The pPv-35.1 clone was transcribed from the T3 promoter. Antisense RNA probes

Figure 1B.

P	RDDNSDIVATDTMKNTVYAKAKECSDI-SVEDFAILLAKHFVSFYKKVTGA	50
s	RD-NSKIVATDTMKNTVYAKAKECSKILSAEKFAILLALHFVSFYKKVTGA	104
P	IVNIVEKPWERVIVDGOPHOHCFTLGSEKHTTEAILOKSGSLOLTSGIEG	100
s	IVNIVERPTERVINDGQPHEHGFKLGSEL-TTEAIVQLSGSLQLTSGIEG	153
P	LSVLKTTQSVFENFIRDKYTALPDTRERILATEVTALWRYSYESLYNLPQ	150
S	LSVLKTTQSFGVNFIRDKYTALPDTRERILATEVTALWRYSYESQYSLPQ	203
P	KPKYFTDKYLEVKKVLADTFFGPTKQGNYSPSVQNTLYLMAKATLNRFPD	200
S	KPFYFTEKYQEVKKVLADTFFGPPNGGVYSPSV-NTLYLMAKATLNR-PD	251
P	IAYCHLKMPNKHFLPVNISSK-DGPIVKFEDDVYLPTDEPHGSIEASL	247
S	IAYVSLKMPNLHFLPVNISNISNQDGPIVKFEDDVYLPTDEPHGSIQNSL	301
P	LQLFYILL*	255
s	SRTLSKL*	308

Figure 1.

A Homology of the nucleotide sequences between the soybean (S) and Phaseolus (P) cDNAs coding for uricase II. Nucleotides are numbered to the right of the sequence. Dots indicate identical nucleotides, and dashes missing bases in both sequences. The predicted amino acid sequence of the longest ORF of the Phaseolus clone is shown in standard single-letter code above the nucleotide sequence. The amino acids are positioned above the first nucleotide of the triplet. The termination codon is indicated with asterisk (*). B Comparison of the amino acid sequences deduced from the Phaseolus (P) and soybean (S) uricase II clones. The number of amino acids is indicated on the right. Identical amino acids are linked by vertical lines (|), missing amino acids are denoted by dashes (-).

labelled with ³⁵S-UTP (Amersham, UK, 1000–1500 Ci/mmol), or (DIG)-11-rUTP (Boehringer, Germany) were obtained³¹ and hybridized to the tissue sections, according to a protocol³² derived from a method described by Cox and Goldberg³³. Sections, coated with Kodak NTB2 nuclear emulsion, were exposed for 2 to 4 weeks and stained with toluidine blue O. The non-radioactive hybridization was performed as described by Kouchi and Hata³⁴. The sections were stained with safranin.

Results and discussion

Isolation of the uricase II cDNA clone pPv-35.1. A P. vulgaris var. Tendergreen nodule-specific cDNA li brary constructed in a λ gt11 vector was screened using the soybean uricase II cDNA clone as a probe. A striking difference in the abundance of uricase II mRNA in Phaseolus compared to soybean is reflected in the relative number of positive clones obtained during the library screening procedure. Several cDNA clones were easily isolated in Phaseolus, as was expected since in this plant uricase II is the second most abundant protein in nodules. In soybean, on the other hand, it has been reported²³, and verified by our own results (an average of 2 positive clones in 6×10^4 screened plaques), that the mRNA of uricase II is present in low concentration. In

soybean, the abundance of the protein is attributed to its accumulation in the peroxisomes of unifected cells²³. The discrepancies in the number of cDNA

clones present in the two libraries may reflect differences either in the transcription rates or/and in the stability of the uricase II mRNAs in the nodules of these

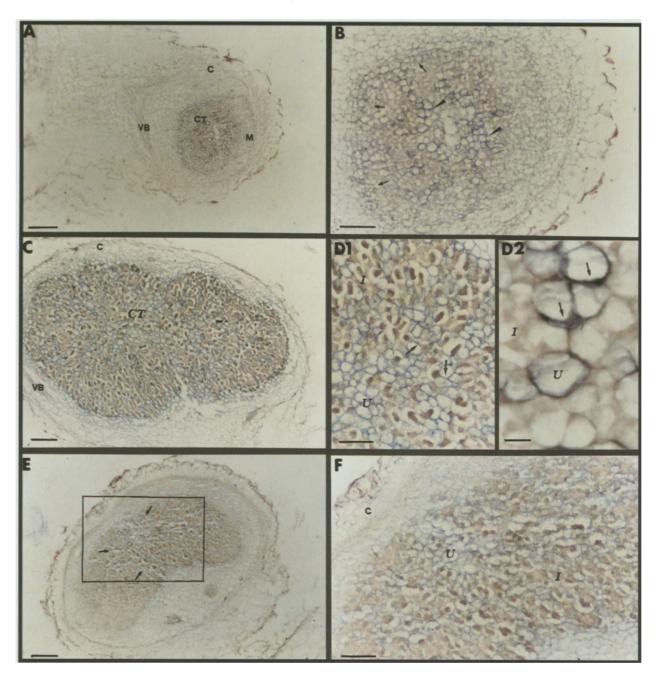


Figure 2. In situ localization of uricase II transcripts in developing root nodules of *P. vulgaris*. Sections were hybridized with DIG-11-rUTP labelled antisense pPv-35.1 RNA. Positive hybridization signals are visible as blue colour development. CT: central tissue, C: cortical cells, VB: vascular bundle, M: meristematic cells, U: uninfected cells, I: infected cells.

A Section of a 15-day-old nodule. Hybridization signal is detected only in the central tissue of the nodule. Bar represents $100 \, \mu m$. B The central tissue of 14-day-old nodule in a higher magnification. The signal is detected in the peripheral uninfected cells of the proximal part of the central tissue (arrows) and in the uninfected cells residing among infected cells (arrowheads). Bar represents $50 \, \mu m$. C Section of a 21-day-old nodule. The expression of the uricase II gene is at maximum level. This is reflected in an intense colour precipitate in all the uninfected cells of the central tissue. Bar represents $100 \, \mu m$.

D1-D2 Magnification of the central tissue of a 21-day-old nodule. In several cells the signal is detected mainly in the periphery of the uninfected cells (arrows). Bar presents 50 μ m in D1 and 10 μ m in D2.

E Section of a 28-day-old nodule. The signal is detected in the uninfected cells in the most central part of the central tissue (arrows). Bar represents 100 µm.

F Detail of E. The intensity of the hybridization signal of the uninfected cells compared to D1 is clearly reduced. Bar represents 100 µm.

plants. This question requires further experimental investigation.

Nucleotide sequence determination of pPv-35.1. The uricase II clones isolated from *Phaseolus* were plaquepurified, and their sizes were determined using the PCR technique. The largest clones were subcloned into the pBluescript KS⁺ vector. Northern blot analysis has revealed that the uricase II cDNA in bean hybridizes with an mRNA of about 1.3 Kb in length²⁴ (Papadopoulou, unpubl. data). None of the isolated clones was a full-sized clone, and further attempts to obtain one were unsuccessful. Therefore, the nucleotide sequence of the largest available clone, pPv-35.1 (1048 bp) was determined by the dideoxy chain termination method²⁸, and the sequence was compared with that of published soybean cDNA clone²³. As was expected, the first 54 amino acids of the ORF are absent. The overlap between the two clones begins at the nucleotide 214 of the soybean clone, revealing 88.8% identity in the coding region (fig. 1A). As can be seen by comparing the amino acid sequences of the soybean and Phaseolus clones, a number of amino acids have been replaced while others have been added or omitted (fig. 1B).

Taking into account that the two plants belong to different tribes, the conservation of the primary structure of the enzymes may be characterized as relatively high. This fact could be explained if the function of the enzyme in the special ureide-catabolism pathway is considered. This pathway exists in both plants when they are nodulated.

In situ hybridization at late stages. We were interested to determine the type of cell in which the uricase II gene is induced, and the timing of its expression. We therefore localized the uricase II transcripts in developing Phaseolus nodules by in situ hybridization. Nodules from Phaseolus plants infected with Rhizobium leguminosarum biovar phaseolii were collected at different developmental stages: 14, 21, 28 and 35 days after infection. Thin sections were taken and hybridized to anti-sense RNA for uricase II.

At 14 days after infection the nodule is not fully formed, although the central tissue, consisting of infected and unifected cells, can be distinguished. Infected cells are still of about the same size as unifected ones, but show a more dense cytoplasmic content. In this developmental stage the hybridization signal is detected as a blue precipitate in the uninfected cells, both in cells at the periphery of the central tissue and in uninfected cells between patches of infected cells (figs 2A, 2B).

In 21-day-old nodules the central tissue consists of clearly distinguished infected and uninfected cells and is surrounded by a layer of uninfected cells which forms the boundary layer³⁵. At this stage the uricase II transcripts are detected in the uninfected cells which extend into the whole central tissue of the nodule among larger infected cells (figs 2C, 2D1).

In 28-day-old nodules the spatial expression pattern of the uricase II gene is not significantly changed. The signal is detected again in the uninfected cells, though its intensity is considerably reduced (figs 2E, 2F). In 28-day-old nodules the signal appeared only after a 16-hour incubation of the colour reaction. In contrast, the signal in 14-day- and 21-day-old nodules appeared within the first 6 hours of the colour reaction. This is consistent with the temporal expression profile of uricase II mRNAs reported before^{22, 24}, which shows that in 28-day-old nodules the level of the uricase II transcripts declines.

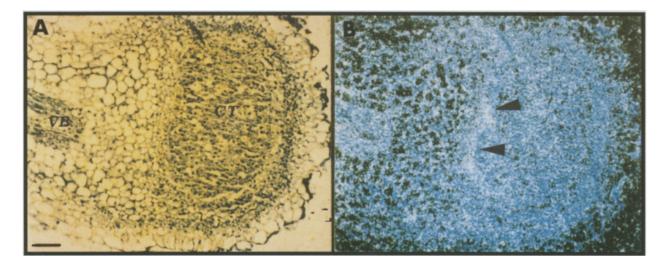


Figure 3. Section of a 12-day-old root nodule of *P. vulgaris* hybridized to ³⁵S-labelled antisense pPv-35.1 RNA. CT: central tissue, VB: vascular bundle.

A is a bright field micrograph in which the silver grains are visible as black dots.

B is a dark field micrograph in which the hybridization signal is represented by white dots. The localization of the uricase II transcripts is detected in the proximal part of the developing central tissue (arrowheads). Bar represents $100 \mu m$.

In the last developmental stage studied, that is in 35-day-old nodules, no signal was detected in any attempts (data not shown). This could mean that the uricase II mRNAs do not exist any more in nodules of that age, probably because the senescence of the nodules is at a very advanced stage and the metabolism of the nodule is altered, leading to suppression of the transcription of the uricase II gene.

It should be pointed out that in many cases the colour precipitate is detected in the periphery of the uninfected cells, where the peroxisomes are localized in these cells³⁶ (figs 2D1, 2D2).

In situ hybrization at early stages. Since we were interested in the early stages of development and the exact localization of the appearance of the uricase II transcripts at these stages, one more set of in situ hybridization experiments was performed using the non-radioactively labelled uricase II antisense RNA. However, in these experiments a problem of high background arose, possibly due to the low transcription level of the uricase II gene. As a solution, the uricase II antisense RNA was labelled with 35S-UTP and hybridized to sections of 6, 9, 10- and 12-day-old nodules. These developmental intervals were chosen taking into account previous reports according to which the Phaseolus uricase II transcripts begin to accumulate from day 11 after inoculation^{4, 31} and the soybean uricase II mRNA appears between 6 and 9 days after infection²⁶.

The first developmental stage at which the uricase II mRNA can be detected is in 12-day-old nodules. The hybridizing signal is present in the proximal part of the central tissue, and is specifically limited to a narrow area containing uninfected cells (fig. 3). The proximal area of the central tissue contains 'older' infected cells; that is, the first cells being invaded by rhizobia. The appearance of uricase II transcripts in this area can be related to the production of an intermediate compound in the pathway of ureide synthesis in the infected cells that triggers the activation of the uricase II gene. No signal was detected in any of the earlier stages studied.

Acknowledgments. This work was partially supported by EEC Biotechnology Programme, AMICA (No BI02-CT93-0400) to P. Katinakis, K. Papadopoulou was supported by a short-term EMBO fellowship and by the Bodossaki Foundation.

- 1 Ireland, R., in: Plant Physiology, Biochemistry and Molecular Biology, p. 417, Eds D. T., Dennis and D. H., Turpin, Longman Scientific and Technical, Singapore, 1990.
- 2 Gunning, B. E. S., Pate, J. S., Minchin, F. R., and Marks, I., Transport at the Cellular Level. Symp. Soc. expl Biol. 28 (1979) 87.
- 3 Matsumoto, T., Yatazawa, M., and Yamamoto, Y., Pl. Cell Physiol. 18 (1977) 459.
- 4 Pate, J. S., Atkins, C. A., and Rainbird, R. M., in: Current Perspectives in Nitrogen Fixation, p. 105. Eds A. H., Gibson

- and W. E., Newton, Australian Academy of Sciences, Canberra 1981.
- 5 Reynolds, P. H. S., Boland, M. J., Blevins, D. G., Schubert, K. R., and Randall, D. D., Pl. Physiology 69 (1982) 1334.
- 6 Schubert, K. R., A. Rev. Pl. Physiol. 37 (1986) 539.
- 7 Shelp, B. J., Atkins, C. A., Storer, P. J., and Canvin, D. T., Archs Biochem. Biophys. 224 (1983) 429.
- 8 Tiplett, E. W., Blevins, D. G., and Randall, D. D., Pl. Physiol. 65 (1980) 1203.
- 9 Bergersen, F. G., and Turner, G. L., Biochim. biophys. Acta 141 (1967) 507.
- 10 Miflin, B. J., and Lea, P. J., in: The Biochemistry of Plants, vol. 5, p. 169. Ed. B. J. Miflin, Academic Press, New York 1980.
- 11 Forde, B. G., Day, H. M., Turton, J. F., Shen, W.-J., Cullimore, J. V., and Oliver, J. E., Plant J. 7 (1989) 391.
- 12 Robertson, J. G., Farnden, K. J. F., Warburton, M., and Banks, J. M., 2 Aust. J. Pl. Physiol. 2 (1975) 265.
- 13 Meeks, J. C., Wolk, C. P., Schiling, N., Shaffer, P. W., Avissar, Y., and Chien, W.-S., Pl. Physiol. 61 (1978) 980.
- 14 Cullimore J. V., Gebhardt, C., Saarelainen, R., Miflin, B. J., Idler, E. B., and Baker, R. F., J. molec. appl. Genet. 2 (1984) 5889
- 15 Boland, M. J., and Schubert, K. R., Archs. Biochem. Biophys. 220 (1983) 179.
- 16 Hanks, J. F., Tolbert, N. E., and Schubert, K. R., Pl. Physiol. 68 (1981) 65.
- 17 Hanks, J. F., Schubert, K. R., and Tolbert, N. E., Pl. Physiol. 71 (1983) 869.
- 18 Lucas, K., Boland, M. J., and Schubert, K. R., Archs Biochem. Biophys. 226 (1983) 190.
- 19 Newcomb, E. H., and Tandon, S. K., Science 212 (1981) 1394.
- 20 Bergmann, H., Preddie, E., and Verma, D. P. S., EMBO J. 2 (1983) 2333.
- 21 Legocki, R. P., and Verma, D. P. S., Science 205 (1979) 190.
- 22 Campos, F., Padilla, J., Vazquez, M., Ortega, J. L., Enriquez, C., and Sanchez, F., Pl. molec. Biol. 9 (1987) 521.
- 23 Ngyuen, T., Zelechowska, M., Foster, V., Bergmann, H., and Verma, D. P. S., Proc. natl Acad. Sci. USA 82 (1985) 5040.
- 24 Sanchez, F., Campos, F., Padilla, J., Bonneville, J.-M., Enriquez, C., and Caput, D., Pl. Physiol. 84 (1987) 1143.
- 25 Nap, J.-P., and Bisseling, T., in: The Molecular Biology of Symbiotic Nitrogen Fixation, p. 181. Ed. P. M., Gresshof, CRC Press Boca Raton, FL 1990.
- 26 Bisseling, T., Van den Bos, R. C., and Van Kammen, A., Biochim. biophys. Acta 539 (1978) 1.
- 27 Sambrook, J., Fritsch, T., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1989.
- 28 Sanger, F., Nicklen, S., and Conlson, A. R., Proc. natl Acad. Sci. USA 74 (1977) 5463.
- 29 Staden, R., Nucleic Acids Res. 12 (1984) 521.
- 30 Yang, W.-C., Katinakis, P., Hendriks, P., Smolders, A., de Vries F., Spee, J., van Kammen, A., Bisseling, T., and Franssen, H., Plant J. 3 (1993) 573.
- 31 Scheres, B., Van den Wiel, C., and Zalensky, A., Cell 60 (1990) 281.
- 32 Van den Wiel, C., Scheres, B., Franssen, H., Van Lierop, M. J., Van Lammeren, A., and Bisseling, T., EMBO 9 (1990)

 1.
- 33 Cox, K. H., and Goldberg, R. B., in: Plant Molecular Biology: A Practical Approach, p. 1. Ed. C. H., Shaw. IRL Press, Oxford 1988.
- 34 Kouchi, H., and Hata, S., Molec. gen. Genet. 238 (1993)
- 35 Gresshof, P. M., and Delves, A. C., in: A Genetic Approach to Plant Biochemistry, p. 159. Eds A. D. Blanstein and P. J. King, Springer-Verlag, New York 1986.
- 36 Newcomb, E. H., Kaneko, Y., and Van den Bosch, K. A., Protoplasma 150 (1989) 150.